w Kennisplatform API's speciale editie

NOVUM https://www.geonovum.nl/agenda/kennisplatform-apis-speciale-editie

API First with
"Patterns for APl Design":
Your Personal APl Design Process?

Dr. Olaf Zimmermann, Dr. Daniel Liibke

olaf.zimmermann@unisg.ch
daniel.luebke@digital-solution-architecture.com

Digital Solution Archi '-‘1
\gl a olution Architecture 'A

\y/

University of St.Gallen

mailto:olaf.zimmermann@unisg.ch
mailto:daniel.luebke@digital-solution-architecture.com
mailto:daniel.luebke@digital-solution-architecture.com
mailto:daniel.luebke@digital-solution-architecture.com
mailto:daniel.luebke@digital-solution-architecture.com
mailto:daniel.luebke@digital-solution-architecture.com
https://www.geonovum.nl/agenda/kennisplatform-apis-speciale-editie
https://www.geonovum.nl/agenda/kennisplatform-apis-speciale-editie
https://www.geonovum.nl/agenda/kennisplatform-apis-speciale-editie
https://www.geonovum.nl/agenda/kennisplatform-apis-speciale-editie
https://www.geonovum.nl/agenda/kennisplatform-apis-speciale-editie
https://www.geonovum.nl/agenda/kennisplatform-apis-speciale-editie
https://www.geonovum.nl/agenda/kennisplatform-apis-speciale-editie

Key Messages

API design is hard... problems and concepts stay while technologies come and go
Patterns make design knowledge timeless — but concrete and actionable still

We mined 44 API design patterns from personal experience and community insights
These “Patterns for APl Design” support API first practices nicely

They complement API-first design processes such as ADDR

Agenda for afternoon sessions:
Top 5 patterns deep dive, interest-driven and interactive
Design space discussion on Asynchronous APIs:
Questions, Options, Criteria (QOC)

© Olaf Zimmermann and Daniel Liibke, 2025.

https://api-patterns.org/

API Design is Hard...
a Wicked Problem

© Olaf Zimmermann and Daniel Lubke, 2025.

https://en.wikipedia.org/wiki/Wicked_problem

Context/Example: Frontend-Backend Integration

Application Application Backend (in the Cloud)

Cloud
Database

Frontend

End Users Logic
! Web
Application

Mobile App Other Cloud
Storage
Tenant Ops Cloud Compute

Services
External Services

(Other Cloud, On Premises)

Presentation (:[)
‘ Queue

Business
Logic

https://medium.com/olzzio/what-is-a-cloud-native-
application-anyway-part-1-8241e9c71a62

© Olaf Zimmermann and Daniel Lubke, 2025.

https://medium.com/olzzio/what-is-a-cloud-native-application-anyway-part-1-8241e9c71a62
https://medium.com/olzzio/what-is-a-cloud-native-application-anyway-part-1-8241e9c71a62
https://medium.com/olzzio/what-is-a-cloud-native-application-anyway-part-1-8241e9c71a62
https://medium.com/olzzio/what-is-a-cloud-native-application-anyway-part-1-8241e9c71a62
https://medium.com/olzzio/what-is-a-cloud-native-application-anyway-part-1-8241e9c71a62
https://medium.com/olzzio/what-is-a-cloud-native-application-anyway-part-1-8241e9c71a62
https://medium.com/olzzio/what-is-a-cloud-native-application-anyway-part-1-8241e9c71a62
https://medium.com/olzzio/what-is-a-cloud-native-application-anyway-part-1-8241e9c71a62
https://medium.com/olzzio/what-is-a-cloud-native-application-anyway-part-1-8241e9c71a62
https://medium.com/olzzio/what-is-a-cloud-native-application-anyway-part-1-8241e9c71a62
https://medium.com/olzzio/what-is-a-cloud-native-application-anyway-part-1-8241e9c71a62
https://medium.com/olzzio/what-is-a-cloud-native-application-anyway-part-1-8241e9c71a62
https://medium.com/olzzio/what-is-a-cloud-native-application-anyway-part-1-8241e9c71a62
https://medium.com/olzzio/what-is-a-cloud-native-application-anyway-part-1-8241e9c71a62
https://medium.com/olzzio/what-is-a-cloud-native-application-anyway-part-1-8241e9c71a62
https://medium.com/olzzio/what-is-a-cloud-native-application-anyway-part-1-8241e9c71a62
https://medium.com/olzzio/what-is-a-cloud-native-application-anyway-part-1-8241e9c71a62
https://medium.com/olzzio/what-is-a-cloud-native-application-anyway-part-1-8241e9c71a62
https://medium.com/olzzio/what-is-a-cloud-native-application-anyway-part-1-8241e9c71a62

Web API Example

* API clients send requests
and API providers send
responses to them

e Often JSON over HTTP
* Many other protocols and
formats (old and new)
* Data contracts matter

e Often part of OpenAPI
Specification (OAS)

* JSON Schema

* Protocol Buffers

Request Message
curl =X GET "http://localhost:8080/customers/rgppOwkpec” —H "accept */*"

7
Front ' Backend
“ C|[e
O —

Consumer AP Provider

Response Message
HTTP 200/0K

{
"_links": [
"deprecation": "string“
"href": "string"

1,
"birthday": "1982-02-12T09:10:07.3702",
"moveHistory": [
{ H i ; i
"city": "Sample City", Decision required about :
"postalCode": "aZipCode", moveHistory data: 1
embed in body payload |

1

1

1

i

"streetAddress": "Road 1" :

} 1
] | orprovide a link to it?

} vomes ety 7

Reference: Figure 4.1 in Patterns for API Design, Addison Wesley 2022

© Olaf Zimmermann and Daniel Liibke, 2025.

5

Existing and New Complexity of
Capabilities systems

Emerging Technologies

Quality goals, Design Forces Project pressure,
security needs (aka Daily Business) legacy system constraints

Feature Change Requests Change dynamics Guidelines

(Corporate, Community)

© Olaf Zimmermann and Daniel Lubke, 2025. 6

“Patterns for APl Design”:
Motivation and Overview

© Olaf Zimmermann and Daniel Liibke, 2025.

Why Patterns?

Patterns collect and document community experience —
proven solutions to common, recurring problems

 Different pattern templates, themes:

* Name, Icon
Context: Intent, motivation and applicability
Solution structure and its forces
* Consequences: Benefits and liabilities
Examples and implementation hints
Pointers to related patterns
* Known uses

* Community processes/practices:
* Shepherding (coaching)
* Writers’ workshops
* Ruel of three (known uses) ™~

© Olaf Zimmermann and Daniel Liibke, 2025.

Existing Patterns Relevant for Remote API Design

ENTERPRISE

INTEGRATION &

PATTERNS

GREGOR HoOHPE
Bossy Wi
Wer

SERVICE
D ESIGN PATTERNS

ROBERT DAIGNEAU

IAN ROBINSON

s \‘,‘ /\:\

=¥

Christoph Fehling - Frank Leymann
Ralph Retter - Walter Schupeck
Peter Arbitter

Cloud Computing
Patterns

Fundamentals to Design, Build,
and Manage Cloud Applications

@ Springer

Patterns abstract and generalize to sustain; they are mined, not invented

© Olaf Zimmermann and Daniel Liibke, 2025.

SIMPLIFYING INTEGRATION
wiTH LooseLy COUPLED
MESSAGE EXCHANGES

Cesare Pautasso B

P

Ll

s g

A

PATTERNS FOR
API DESIGN

,,"‘u e

Pattern Example 1: Pipes and Filters

https://www.enterpriseintegrationpatterns.com/patterns/messaging/PipesAndFilters.html

How can we perform complex processing on a message while maintaining independence and flexibility?

Pipe Pipe Fipe Pipe
——»| Decrypt Authenticate De-Dup |

kA J

k

Incoming Fitter Fitter Fitter ‘Clean'
Crder Order

Use the Pipes and Filters architectural style to divide a larger processing task into a sequence of smaller, independent processing steps (Filters) that are
connected by channels (Pipes).

* Forces:
» Separation of concerns, reuse and (de-)composition, concurrency

* Known uses:
* UNIX, application integration flows, Extract-Transform-Load (ETL)
* Many products and open source projects for these and other usage scnearios

© Olaf Zimmermann and Daniel Liibke, 2025. 10

https://www.enterpriseintegrationpatterns.com/patterns/messaging/PipesAndFilters.html

Pattern Example 2: Publish-Subscribe

An application is using Messaging to announce events.

How can the sender broadcast an event to all interested receivers?

-

..f%..i

Address
Changed

Subscriber

- 9, —a==

Publisher

Address
Changed

Fublish-Subscribe
Channel

>

t@ .

Address
Changed

Subschber

=

t@ .

Address
Changed

Subscriber

ENTERPRISE #, it
INTEGRATION "

PATTERNS

* Forces:
* Coupling dimensions
* Message semantics

* Known uses:

* Messaging systems such as
ActiveMQ and RabbitMQ

* Apache Kafka

* Managed cloud services
(AWS, Azure, ...)

Send the event on a Publish-Subscribe Channel, which delivers a copy of a particular event to each receiver.

https://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html

© Olaf Zimmermann and Daniel Liibke, 2025.

11

https://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html

PATTERNS FOR

Our Pattern Categories and Questions Answered [iss

Foundation Patterns Responsibility Patterns Structure Patterns
Which types of (sub-)systems and What is the architectural role What is an adequate number of
components are integrated? played by each API endpoint? representation elements for
request and response messages?
From where should an API be How do these roles and the
: . . How should these elements be
accessible? operation responsibilities
structured?
How should it be documented? realizing them impact

. : How can they be grouped and
(micro-)service cuts and !
annotated with usage

ity?
granularity? instructions?

Quality Patterns Evolution Patterns

How can an API provider achieve Howio dedwithiitecycie

5 < management concerns such as
a certain level of quality of the
support periods and versioning?

offered API, while using its . .
) N How to promote backward httQS . [z d 9 -
available resources in a cost-
compatibility and communicate

effective way? patterns.org/categories

breaking changes?

How can the quality tradeoffs be
communicated and accounted

for?

© Olaf Zimmermann and Daniel Liibke, 2025. 12

https://api-patterns.org/categories
https://api-patterns.org/categories
https://api-patterns.org/categories

Meet the Authors

(and the Book Content)

Daniel Liibke

Uwe Zdun Cesare Pautasso

Processing Resource

Information Holder Resource

Operation Responsibilities

Computation Function

7| state Creation Operation

&)

J Retrieval Operation

State Transition Operation

Information Holder Types

o

Operational Data Holder

Master Data Holder
=)
So| | Reference Data Holder

=)
#% | DataTransfer Resource

Link Lookup Resource

Atomic Parameter

-0
° ‘ Atomic Parameter List
-0

=
| Parameter Tree
‘

°
\
\
[E‘J Parameter Forest

Element Stereotypes

‘;‘ Data Element
le‘ 1d Element
‘;1 Link Element

‘ 0o ‘ Metadata Element

Composite Representations

y

Foundation
:tEJ Frontend Integration Public A |#2w| AP1 Description
/ﬁ/! Backend Integration mmunity APT
I | API
Responsibility Structure Qua
Endpoint Roles Representation Elements Quality Management

and Governance
[.-1 API Key

[4'} Rate Limit

Rate Plan
Service Level Agreement

‘“.[71 Error Report
Data Transfer Parsimony
‘3‘ Conditional Request
‘ﬁgﬂ Request Bundle
‘ 3 ‘ Wish List
g
{ 31 Wish Template

Reference Management

‘ = ‘ Embedded Entity

‘ & J Linked Information Holder

4

/

Evolution

PATTERNS FOR

Version Identifier

https://api-patterns.org) semncc s

L

(EU =
I;: Two In Production ‘ 11| Limited Lifetime Guarantee

._(__

)

3

)

Aqgvessive Obsolescence |53 ecernal Lifetime Guarantee

| =«

ey ¥ ’
V| Experimental Preview

© Olaf Zimmermann and Daniel Liibke, 2025. = 13

https://api-patterns.org/
https://api-patterns.org/
https://api-patterns.org/

https://api-patterns.org/

Selected Patterns from the
Book (and the Web)

© Olaf Zimmermann and Daniel Liibke, 2025.

14

https://api-patterns.org/
https://api-patterns.org/
https://api-patterns.org/

PATTERNS FOR
API DEsiGN

Patterns as a Design Guide and/or Checklist

é} API Visibility API Direction
= (= Co $ |
Parameter Parameter

@
S
o o
Public Community Solution Frontend Backend Atomic Atomic
API API Internal API Integration Integration Parameter Parameter List Tree Forest
5 Endpoint Roles and Operation Responsibilities
o4 bO 2 4 o - -
28 84 L
¢ & ¥ &4 ey B =)
-
Processing Information Data Transfer Link Lookup Computation State Creation Retrieval State Transition Operational Master Reference
Resource Holder Resource Resource Function Operation Operation Operation Data Holder Data Holder Data Holder
Resource
Refine Message Design Decide on Document
API Evolution Strategies AP| Contracts

Designing Request and Response
Message Representations for Quality
@ @ U | U | [
> \ Qo .. 7 ’ o
Pagination Embedded Linked ? + b + + *
Entity Information
Experimental Aggressive Two in API Service Level
Preview Obsolescence Production Description Agreement

API Key Error Context Holder
Report Representation a .
'
V1.1 g

@ 0 @ @ Conditional ~ Request
Request Bundle
- u - i Pricing Plan Rate Limit
% Limited Semantic
-0 Lifetime Version Versioning
= &

Data Metadata Id Element Link Element
Element Element
Guarantee Identifier

WishList WishTemplate

© Olaf Zimmermann and Daniel Liibke, 2025.

Responsibility Patterns Map

* Which architectural role
should an APl endpoint
play?

* What is the responsibility
of each APl operation?

https://eprints.cs.univie.ac.at/6520/1/MAP-
EuroPlop2020aPaper.pdf

© Olaf Zimmermann and Daniel Libke, 2025.

Reference: Patterns for API Design,

Addison Wesley 2022.

Realization strategy

Link L
Reso

=
%
25

Data

8
g
s

c

Functional vs. data perspective
(endpoint-level)

Oft
¥ (&

Processing

Resource

Information
Holder
Resource

\

Computation
Function

Retrieval
Operation

J

State Creation
Operation

(janaj-uonelado)

Wi

SJUIRISUOD % SanqIsuodsey

State Transition
Operation

\

g

BIEP 10} BINJONASEIU|

I

Transfer

\ Resource /

o
@©
(jonaj-uiodpus)

Inheritance: Different types of data (life-
time, referencing, change dynamics)

Operational
Data Holder

-

/

Master Data
Holder

(|1enel-luiodpus)

SOlISUBIORIEYD) BIR(PRIOIS

Reference Data
Holder /

16

https://eprints.cs.univie.ac.at/6520/1/MAP-EuroPlop2020aPaper.pdf
https://eprints.cs.univie.ac.at/6520/1/MAP-EuroPlop2020aPaper.pdf
https://eprints.cs.univie.ac.at/6520/1/MAP-EuroPlop2020aPaper.pdf

Processing Resource

* Context
* Activity-oriented

semantics of story

* Forces

Contract expressiveness
and service granularity
(and their impact on
coupling)

Learnability and
manageability

Semantic
interoperability

Response time
Security and privacy

Compatibility and
evolvability

https://api-patterns.org/patterns/responsibility/endpointRoles/ProcessingResource.html

% | Processing Resource 7

Add a Processing Resource endpoint to the APl exposing
operations that bundle and wrap application-level activities
or commands.

© Olaf Zimmermann and Daniel Liibke, 2025.

17

https://api-patterns.org/patterns/responsibility/endpointRoles/ProcessingResource.html
https://api-patterns.org/patterns/responsibility/endpointRoles/ProcessingResource.html
https://api-patterns.org/patterns/responsibility/endpointRoles/ProcessingResource.html

Reference: Patterns for API Design, Addison Wesley 2022.

Processing Resource ot]

API

i DESign issues: Processing Resource
. + preconditions
* Backend interface ' macagions
resourceState // here: processinstanceState
* Transaction management

* ldempotency

[

stateCreationOperation(in): ResponseMessagel
retrievalOperation(in): ResponseMessage?2
stateTransitionOperation(in): ResponseMessage3
computationFunction(in): ResponseMessage4

y4 v A

UtilityFunctions Database Backend Adapter
Adapter

+ 4+ o+ o+

* Implementation hints: 7 i
* Framework support available £ \
« Domain-driven design as input P'mnj ook

Resource State

d Te Sti n g m a tt e rS ProcessingResourcelmpl

+ createUpdateDelete(Data) anplicationState
+ lookupByld(key): Value PP
+ retrieve(query): Set<Data> + processOperation(in): ResponseMessageN

© Olaf Zimmermann and Daniel Liibke, 2025.

Frontend BPM vs. BPM-as-a-Service

* Business Activity Processor variant of

State Transition Operation pattern @
* Book, website archive, EuroPLoP 2020 prepare Reference: Patterns for APl Design.
Paper Ready Addison Wesley 2022.

* Each APl operation realizes one state
transition, whose mileage may wary:

* Entire business process

:

start

® Slngle aCthlty Running suspend Suspended
* General state machine to be adapted e =
according to domain requirements :
* E.g. DDD, Context Mapper DSL and tools complete N o

* Technology mapping:
* HTTP POST, PUT, PATCH
* Mutations in GraphQL

§€

“ -

cleanup cleanup cleanup

Final

© Olaf Zimmermann and Daniel Liibke, 2025. 19

https://api-patterns.org/patterns/responsibility/operationResponsibilities/StateTransitionOperation
https://web.archive.org/web/20220224172623/https:/microservice-api-patterns.org/patterns/responsibility/operationResponsibilities/StateTransitionOperation#sec:StateTransitionOperation:Solution

Information Holder Resource

PATTERN: INFORMATION HOLDER RESOURCE

How can domain data be exposed in an API, but its implementation still be hidden?
Problem How can an API expose data entities so that API clients can access and/or modify

these entities concurrently without compromising data integrity and quality?

Add an Information Holder Resource endpoint to the API, representing a data-
| oriented entity. Expose create, read, update, delete, and search operations in this
Solution
endpoint to access and manipulate this entity. In the API implementation, coordinate

calls to these operations to protect the data entity.

Forces:

Modeling approach and its
impact on coupling
Quality attribute conflicts
and trade-offs such as
concurrency, consistency;
data quality and integrity;
recoverability and
availability; mutability and
immutability

Security

Data freshness versus
consistency

Compliance with
architectural design
principles

https://api-patterns.org/patterns/responsibility/endpointRoles/InformationHolderResource

© Olaf Zimmermann and Daniel Liibke, 2025.

20

https://api-patterns.org/patterns/responsibility/endpointRoles/InformationHolderResource
https://api-patterns.org/patterns/responsibility/endpointRoles/InformationHolderResource
https://api-patterns.org/patterns/responsibility/endpointRoles/InformationHolderResource

Forces

— Processing speed for content read and update operations

Operational Data Holder

— Business agility and schema update flexibility

— Conceptual integrity and consistency of relationships

Problem

How can an API support clients that want to create, read, update, and/or delete instances of domain
entities that represent operational data: data that is rather short-lived, changes often during daily

business operations, and has many outgoing relations?

Solution

Tag an INFORMATION HOLDER RESOURCE as OPERATIONAL DaTta HOLDER and add API operations to it that allow

API clients to create, read, update, and delete its data often and fast.

Optionally, expose additional operations to give the OPERATIONAL DATA HOLDER domain-specific

responsibilities. For instance, a shopping basket might offer fee and tax computations, product price

update notifications, discounting, and other state-transitioning operations.

https://api-patterns.org/patterns/responsibility/informationHolderEndpointTypes/OperationalDataHolder

© Olaf Zimmermann and Daniel Lubke, 2025.

21

https://api-patterns.org/patterns/responsibility/informationHolderEndpointTypes/OperationalDataHolder
https://api-patterns.org/patterns/responsibility/informationHolderEndpointTypes/OperationalDataHolder
https://api-patterns.org/patterns/responsibility/informationHolderEndpointTypes/OperationalDataHolder

Master Data Holder Known uses:

e Customer Relationship
Management

* Product Inventory

v

How can I design an API that provides access to master data that lives for a long
time, does not change frequently, and will be referenced from many clients?

Forces:
* Master data quality v .
_ Mark an INFORMATION HOLDER RESOURCE to be a dedicated MASTER DATA
* Master data protection HoLpER endpoint that bundles master data access and manipulation opera-
* Data under external tions in such a way that the data consistency is preserved and references are
control, for instance managed adequately. Treat delete operations as special forms of updates.
master data A

management systems

https://api-patterns.org/patterns/responsibility/informationHolderEndpointTypes/MasterDataHolder

© Olaf Zimmermann and Daniel Liibke, 2025.

22

https://api-patterns.org/patterns/responsibility/informationHolderEndpointTypes/MasterDataHolder
https://api-patterns.org/patterns/responsibility/informationHolderEndpointTypes/MasterDataHolder
https://api-patterns.org/patterns/responsibility/informationHolderEndpointTypes/MasterDataHolder

Google Calendar API v3

G

1]}

Events: list

https://www.googleapis.com/calendar/v3/calendars/calendarId/events

Request

- @ orderBy
- @ pageToken

* -0 . - 5@2
*| e Optional request parameters L
- nextPageToken

- timeMin

- A\ items
R ° maxResults [}

Response

@ calendarld (path parameter) @ §

etag

'

© Olaf Zimmermann and Daniel Libke, 2025.

23

Wish List Pattern (1/2)

* Problem:

* How can an API client inform the API provider
at runtime about data that it is interested in?

Que

op

* Forces:
* Client diversity, message size vs. number of messages
* Endpoint complexity

 And more
https://api-patterns.org/patterns/quality/dataTransferParsimony/WishList

e Solution:

* As an API client, provide a WisH LIST in the request that enumerates all desired
data elements of the requested resource.

© Olaf Zimmermann and Daniel Liibke, 2025. 24

[QOK

https://api-patterns.org/patterns/quality/dataTransferParsimony/WishList
https://api-patterns.org/patterns/quality/dataTransferParsimony/WishList
https://api-patterns.org/patterns/quality/dataTransferParsimony/WishList

Wish List Pattern (2/2)

* Known uses:
* Found in many Web and

product APIs, e.g. Atlassian Jira curl -X GET
L http://localhost:8080/customers/gktlipwhjr?fields=
* Variations: customerld,birthday,postalCode

* Expansion, wild cards (*), query

expression (GraphQL!) {

"customerld": "gktlipwhjr",

. "birthday": "1989-12-31723:00:00.000+0000",
[] []
Alternative: "postalCode": "8640"

* Wish Template (structured, }
mock object rather than flat
name list)

© Olaf Zimmermann and Daniel Liibke, 2025. 25

[QOR

https://api-patterns.org/patterns/structure/specialPurposeRepresentations/ErrorReport

Error Report

curl -i -X POST \ Special Purpose Representations
--header "Content-Type: application/json" \

--data "{"username":"xyz","password":"wrong"}"' \

Error Report

HTTP/1.1 4e1
Content-Type: application/json;charset=UTF-8
Date: Wed, 20 Jun 2018 ©8:25:18 GMT

How can an API provider inform its clients about

{ communication and processing faults? How can this
"timestamp" : "2018-06-20T©8:25:10.212+00008",
"status® : 401, information be made independent of the underlying
"error” : “Unauthorized", communication technologies and platforms (for example,
z:::age ,,;auf:;fe“ e protocol-level headers representing status codes)?

}

Therefore:

Reply with an error code in response messages that indicate and classify the faults in a simple, machine-readable way. In addition, add a
textual description of the error for the API client stakeholders, including developers and/or end users such as administrators.

© Olaf Zimmermann and Daniel Lubke, 2025. 26

https://api-patterns.org/patterns/structure/specialPurposeRepresentations/ErrorReport
https://api-patterns.org/patterns/structure/specialPurposeRepresentations/ErrorReport
https://api-patterns.org/patterns/structure/specialPurposeRepresentations/ErrorReport

Known Use/Application Example: RFCs 9457 7807

Problem Details for HTTP APIs Internet Engineering Task Force (IETF)

1. Introduction
2. Requirements Language
3. The Problem Details JSON Object
3.1. Members of a Problem Details Object
3.1.1. "type"
3.1.2. "status"
3.1.3. "title"
3.1.4. ‘"detail"
3.1.5. "instance"
3.2. Extension Members

I

Defining New Problem Types
4.1 Example

4.2, Registered Problem Types
4.2.1. about:blank
Security Considerations
IANA Considerations
References
7.1. Normative References
7.2. Informative References
Appendix A. JSON Schema for HTTP Problems

Appendix B. HTTP Problems and XML

I~ oy |un

Appendix C. Using Problem Details with Other

Request for Comments: 9457
Obsoletes: 7807

Category: Standards Track
Published: July 2023

ISSN: 2070-1721

HTTP/1.1 403 Forbidden
Content-Type: application/problem+json
Content-Language: en

{
"type": "https://example.com/probs/out-of-credit",
"title": "You do not have enough credit.",
"detail": "Your current balance is 3@, but that costs 50.",
"instance": "/account/12345/msgs/abc”,
"balance": 30,
"accounts": ["/account/12345",
"/account/67890"]
}

https://datatracker.ietf.org/doc/html/rfc9457

© Olaf Zimmermann and Daniel Lubke, 2025. 27

https://datatracker.ietf.org/doc/html/rfc9457

Evolution Patterns

Reference: Patterns for API Design,

/

~

Alternatives for introducing incompatible changes

! ' ! !

1.1 &
P
Aggressive Experimental Two in Limited
Obsolescence Preview Production Lifetime
\ Guarantee /
document can show version in document
deprecated message content compatibility
elements h 4 guarantees
e e o
visible in can use
— as format - -
API Version Semantic Service Level
Description Identifier Versioning J Agreement (SLA)

© Olaf Zimmermann and Daniel Liibke, 2024.

Addison Wesley 2022.

28

Limited Lifetime Guarantee

P ub/ioat/on

(imited Lifetime /1
Guarantee S
I ean uce t/fu'f’ APT for 2 Guaranteed
yearc after ict releace. Availability

© Olaf Zimmermann and Daniel Liibke, 2024.

29

Two in Production

-

/7

Two In Production
I can uce thic APT until

the vercion after next ic

I3

releaced.

(w N

© Olaf Zimmermann and Daniel Liibke, 2024.

30

https://api-patterns.org/news

| Pattern Adoption Story

Pattern Adoption Story: Dutch Government & Energy Sector
15 Mar 2023

Pattern Adoption Stories
Dutch Government & Ene

We are delighted to present our first web-exclusive pattern adoption story, contributed by our reader Ton Donker.

In the pattern story Dutch Government & Energy Sector, Ton shares some other well-known uses of the Wish List, Pagination, and Error Report patterns, as well as

On pages like this, we collect contributions from readers of oL additional discussion points and recommended reading.

The Wish List pattern is widely used in Dutch government APIs. One implementation hint is to distinguish between different variants of Metadata Elements by

PrEﬁXingthem e e String:

To distinguish between ‘real’ query parameters and the more Steering’ or ‘meta’ parameters like expand, fields, limit and page, we - the Dutch Energy sector API Working

Group - advocate the usage of an underscore prefix, so_fields, _expand, _limit and _page to prevent misinterpretation of the function of the query parameters.

This pattern adoption story was contributed by Ton Donker, Ruben Haasjes and their readers group. It covers the

21 patterns presented as API Design Pattern of the Week on LinkedIn and Medium as well as other patterns. This

page features part 1 of 5 (part 2, part 3, part 4, part 5).

. WISH LIST https://api-patterns.org/book/pattern-adoption-story-1

© Olaf Zimmermann and Daniel Lubke, 2025. 31

https://api-patterns.org/news
https://api-patterns.org/news
https://api-patterns.org/news
https://api-patterns.org/book/pattern-adoption-story-1
https://api-patterns.org/book/pattern-adoption-story-1
https://api-patterns.org/book/pattern-adoption-story-1
https://api-patterns.org/book/pattern-adoption-story-1
https://api-patterns.org/book/pattern-adoption-story-1
https://api-patterns.org/book/pattern-adoption-story-1
https://api-patterns.org/book/pattern-adoption-story-1
https://api-patterns.org/book/pattern-adoption-story-1
https://api-patterns.org/book/pattern-adoption-story-1

API First
(with ADDR and PfAD)

© Olaf Zimmermann and Daniel Liibke, 2025.

| API First

= “API-first organizations develop APIs before writing other code,
instead of treating them as afterthoughts.” https://www.postman.com/api-first/

= Develop API Contract in different state of mind

= Do notaccidentally expose
internals

APIs Model Business Capabilities

\y/]

Digital Solution Architecture
© Olaf Zimmermann and Daniel Liibke, 2025.

33

https://www.postman.com/api-first/
https://www.postman.com/api-first/
https://www.postman.com/api-first/

| The Alignment Problem

\Y/

Business talks in processes and outcomes

IT talks in systems, services and APIs

Missing shared context results in
fragmented systems and duplicate
APIs

Digital Solution Architecture

Business

IT

Living

© Olaf Zimmermann and Daniel Liibke, 2025.

34

| Every API Lives Inside (at least) a Process

= Processes define when and why APIs are called ’ , i
= Clarify data ownership, order, and
responsibility -

Roqurad

jage Nate
Creatod

> - - - - - o

= Process context prevents building :

"accidental APIs" |

Y S E .

).___________..._'

@ @ ©
Create Profile Order
on Web page Computer

Create Account Create Email

New Employee

Digital Solution Architecture

\Y/

© Olaf Zimmermann and Daniel Liibke, 2025.

35

Business processes are the top in
top-down design

Of course, we learned to combine top-down and bottom-up
bottom-up design

\VJ

Digital Solution Architecture
© Olaf Zimmermann and Daniel Liibke, 2025.

36

| ... to APIs

Likely candidates for APIs are:

o Service Tasks
o Sub-Processes

o Any transition between different participants

May be synchronous, event-driven, message-based, Al, ...

> ; Digital Solution Architecture

© Olaf Zimmermann and Daniel Lubke, 2025.

37

| Single Objects vs Request Bundles

= Processes reveal whether you handle single Pattern: Request Bundle
entities or batches
How can the number of requests and responses be reduced to increase communication
efficiency?
= Example: One invoice vs Invoice Batch upload
= API| design must reflect that granularity
Land Register Service
A
|
for parcelld in Parcellds {
parcelinfos. add (
Get Parcel
landRegisterService. getParcellnformation (parcelld) Information
);)])
} oy
l i
Parcel IDs Parcel Information
> ’ Digital Solution Architecture

© Olaf Zimmermann and Daniel Liibke, 2025.

Reference: Singjai, A.; Zdun, U.; Zimmermann, O.; Pautasso,
C.: Patterns on Deriving APIs and their Endpoints from

Domaln—Drlven AP I DeS|g N Domain Models, Proc. of EuroPloP 2021 (PDF)

Domain Model

API Description Facade as APl

: Pattern . Pattern
determine domain
can contain can use model subset to be
exposed in API
APl Endpoint Patterns
Aggregate Roots
can use
U I%“t:';:“ as APl Endpoints
. : Pattern
alternative alternative alternative alternative
pattermn patiern practice practice
Domain Processes Domain Services Bounded Contexts Entities as
as APl Endpoints as APl Endpoints as APl Endpoints APl Endpoints
: Pattern : Pattern : Practice : Practice

Figure 4: Overview of the patterns for how to derive API endpoints from domain model elements

© Olaf Zimmermann and Daniel Lubke, 2025. 39

https://eprints.cs.univie.ac.at/6948/1/europlop21-s16-camera-ready2.pdf

What is the development

process?
(In which order should | do things?)

© Olaf Zimmermann and Daniel Liibke, 2025.

40

Frequently bought together

75
PRINCIPLES
Oor WEB ParTr
: ESIGN
API DESIGN = S R

DELIVERING VALUE WITH
APIs AND MICROSERVICES

wiTH LOOSELY COUPLED

MESSAGE EXCHANGES

This item: Principles of Web API Patterns for API Design:
Design: Delivering Value with Simplifying Integration with
APIs and Microservices (Addiso... Loosely Coupled Message...

© Olaf Zimmermann and Daniel Lubke, 2025.

41

| Design Patterns as a Checklist

\Y/

Basic Message Structure

3

© 0o 6

|d Element Link Element

Data Metadata
Element Element

Conditional
Bundle

Request
= '% Limited Semantic
-0 Lifetime Version Versioning
- & Guarantee Identifier

WishList WishTemplate

é} API Visibility API Direction
2 8 [\ -©
/\a/\ h.. - . @ -0
& -®
Public Community Solution Frontend Backend Atomic Atomic Parameter Parameter
API API Internal API Integration Integration Parameter Parameter List Tree Forest
Endpoint Roles and Operation Responsibilities
oo 2@; - %g N o + - -
¢ i) e 4 &) &Y (& &
= k3
Processing Information Data Transfer Link Lookup Computation State Creation Retrieval State Transition Operational Master Reference
Resource Holder Resource Resource Function Operation Operation Operation Data Holder Data Holder Data Holder
Resource
Designing Request and Response Refine Message Design Decide on Document
Message Representations for Quality API Evolution Strategies AP| Contracts
@ @ Lo Lo [
- D | @ Bl . . 99 [#9] | [
Pagination Embedded Linked ? + b + + *
Entity Information -
API Key Error Context Holder Experimental Aggressive Two in API Service Level
Report Representation 0 Preview Obsolescence Production Description Agreement
; i *
' 2%
Request \{1.1 g
Rate Limit

Pricing Plan

Digital Solution Architecture

© Olaf Zimmermann and Daniel Liibke, 2025.

42

® =

B Bo

Public Community Solution
API API Internal API

7. Document 2. Capture

the API Activity
\ Steps
ADDR
; PROCESS
6. Refine 3. Identify
the Design API
Boundaries
|gn

5. High-Level
Design

4. Model API
Profiles

© Olaf Zimmermann and Daniel Lubke, 2025.

Frontend Backend
Integration Integration

43

1. Identify
Digital
Capabilities

7. Document
the API

2. Capture
Activity
Steps

ADDR
PROCESS

Public Community Solution
API API Internal API

6. Refine
the Design

Design
Processing Information Frontend Backend
Resource Holder Integration Integration
Resource

5. High-Level
Design

4. Model API
Profiles

© Olaf Zimmermann and Daniel Lubke, 2025.

1. Identify
Digital
Capabilities

7. Document 2. Capture

the API | Align | Activity
\ Steps

(reine Y B octre
P

ROCESS/

6. Refine
the Design

3. Identify
API
Boundaries

ign

5. High-Level
Design

NS

C - 29 @ - - -
& [‘@?ﬁ] [%ﬂ ‘ & %> =] |[&]
Data Transfer Link Lookup Computation State Creation Retrieval State Transition Operational Master Reference

Resource Resource Function Operation ~ Operation Operation Data Holder Data Holder Data Holder

1. Identify
Digital
Capabilities

7. Document
the API

2. Capture
Activity
Steps

I oor X

PROCESS

6. Refine
the Design

3. Identify

API
Embedded Linked .
rrllznetityE Information Boundaries
Holder D ign
-©
© |
-©
Atomic Atomic Parameter Parameter 4 MOdEl API
Parameter Parameter List Tree Forest . :
Profiles
CHCRERC)

Data Metadata Id Element Link Element
Element Element

© Olaf Zimmermann and Daniel Lubke, 2025.

46

1. Identify
Digital
Capabilities

7. Document 2. Capture

the API Activity
\ Steps

B &

Pagination APl Key Error Context
Report Representation ADDR
@, PROCESS
— i 3. Identify
Conditional ~ Request API
Request __Bundle Boundaries
lgn

WishList WishTemplate

5. High-Level
Design

4. Model API
Profiles

© Olaf Zimmermann and Daniel Lubke, 2025.

47

Service Level

API

Description ~ Agreement 2.Ca ptu re
Activity
’“ Steps
Pricing Plan Rate Limit

1. Identify
Digital
Capabilities

PROCESS

6. Refine 3. Identify
the Design API
Boundaries

5. High-Level
Design

4. Model API
Profiles

© Olaf Zimmermann and Daniel Lubke, 2025.

48

@5 (@m)

API Service Level =
Description Agreement Public Community Solution Frontend Backend
API API Internal API Integration Integration

6?3 1. Identify
Pricing Plan Rate Limit Dlgltal
Capabilities

7. Document 2. Capture

g (] 2] (@

the API Activity
Pagination APl Key Error Context
Report Representation StepS
9
|:> @ ~ o~
.2 (g
Conditional ~ Request ADDR ﬁaﬁ *
Request Bundle PROCESS
- i q Public Community Solution
% @ 6. Ref”?e 3. Identify API API Internal AP
= the Design API
WishList WishTemplate E“'I';eﬁdt;md nked Boundaries @ [:LL<:> %
Holder lgn b
'. Processing Information Frontend Backend
@ -© Resource Holder Integration Integration
-0 Resource
Atomic Atomic Parameter Parameter Bt High—LeveI 4 MOdE| API
Parameter Parameter List Tree Forest :

Profiles

e o/[e @
e % ¥ 59 (&) & B (@ (&

Data Transfer Link Lookup Computation State Creation Retrieval State Transition Operational Master Reference
Resource Resource Function Operation ~ Operation Operation Data Holder Data Holder Data Holder

Patterns for APl Design: Chapter/Category MAP

Align

Define

Foundation Patterns
(Chapter 4)

Integration Types
(API Direction)

y

Responsibility Patterns
(Chapter 5)

Endpoint Roles
y

Operation
Responsibilities

Refine

API Visibility

Basic Structure
Patterns

Design
A

y

Message Structuring
Patterns (Chapter 6)

Element
Stereotypes

y

Special-Purpose
Representations

Quality Patterns
(Chapter 7)

Message
Granularity

Client-Driven
Message Content

Message Exchange
Optimization

\ 4

Evolution Patterns
(Chapter 8)

Versioning

Lifecycle
Management
Guarantees

]

© Olaf Zimmermann and Daniel Liibke, 2025.

\ 4

Documentation Patterns
(Chapter 9)

API Description

y

Billing and
Governance

50

Outlook and Summary

© Olaf Zimmermann and Daniel Liibke, 2025.

51

https://socadk.github.io/design-practice-repository/activities/SDPR-StepwiseServiceDesign.html

| Design Practice Repository (DPR) Practice:
“Stepwise Service Design”

Stakeholder
Wants and
Needs Event
Storming
Desired

Business Qualities

Problems
00AD,
Tactic DDD

1. Gather Requirements 2. Model Domain

Functional
Requirements smkc;::g; Domain Model Context Map
R(:::tel;:) Requirements
Tools such as Context
Mapper can support
steps and artifact
creation

More Inputs and
Sources exist, for
instance pattern books
(POEAA, EIP)

API| Design
Strategic Methodologies

DDD

3. Decide Client-
Server Cuts
(Frontends,
Backends)

4. |dentify API
Endpoints and
Operations

Candidate
Endpoint
Design Models List
(Logical,
Physical) Architectural
Decision
Records

© Olaf Zimmermann and Daniel Lubke, 2025.

Responsibility is a
Microservice API Patterns
category:
Www.microservice-api-
Qatterns.org

Responsibility
Patterns RESTful HTTP

Best Practices

5. Decompose and |
Refactor

Refined
Endpoint
List

API Description

Quality and Evolution are
Microservice API Patterns
categories:
WwWw.microservice-api-
patterns.org

Quality and
Evolution
Patterns

6. Specify Contracts
and Protocol
Bindings

Service Level
Agreement

52

https://socadk.github.io/design-practice-repository/activities/SDPR-StepwiseServiceDesign.html
https://socadk.github.io/design-practice-repository/activities/SDPR-StepwiseServiceDesign.html
https://socadk.github.io/design-practice-repository/activities/SDPR-StepwiseServiceDesign.html
https://socadk.github.io/design-practice-repository/activities/SDPR-StepwiseServiceDesign.html
https://socadk.github.io/design-practice-repository/activities/SDPR-StepwiseServiceDesign.html
https://socadk.github.io/design-practice-repository/activities/SDPR-StepwiseServiceDesign.html
https://socadk.github.io/design-practice-repository/activities/SDPR-StepwiseServiceDesign.html

| What to do next?

= Use API design patterns (ours, others) as checklist, as documentation tool
= See examples in this presentation

= Make API design patterns part of your personal API design process
= Or community guidelines?

= Donate known uses and discussion input:
= As Ton and team did: https://api-patterns.orq/book/pattern-adoption-story-1

= Afternoon sessions:
= Top 5 patterns deep dive (interest-driven, interactive)
= Asynchronous APIs: questions, options, criteria
(design space discussion)

© Olaf Zimmermann and Daniel Liibke, 2025.

53

https://api-patterns.org/book/pattern-adoption-story-1
https://api-patterns.org/book/pattern-adoption-story-1
https://api-patterns.org/book/pattern-adoption-story-1
https://api-patterns.org/book/pattern-adoption-story-1
https://api-patterns.org/book/pattern-adoption-story-1
https://api-patterns.org/book/pattern-adoption-story-1
https://api-patterns.org/book/pattern-adoption-story-1
https://api-patterns.org/book/pattern-adoption-story-1
https://api-patterns.org/book/pattern-adoption-story-1

| Professional Services & Research Project(s)

Digital Solution Architecture: https://www.digital-solution-architecture.com or email Daniel

Research project: “Towards Sustainable Software Architectures for Cyber-physical Systems of Systems”

Systems”
= The loT and CPSS have many APIs... requirements and decision modelling input very welcome!
welcome!
I—I_.Swiss National
JSS Dear Researchers column to narrow gap Science Foundation

between practice (you!) and academia

https://www.sciencedirect.com/spe SoFTWARE
cial-issue/10DML17WPDQ

» Journal of Systems and Software
e

Articles & lssues v About Publish Order journal 2 Q Search in this journal

Special issue
Dear Researchers: The perspective of software practitioners
Lost updote 28 October 2025

© Olaf Zimmermann and Daniel Lubke, 2025. 54

https://www.digital-solution-architecture.com/
https://www.digital-solution-architecture.com/
https://www.digital-solution-architecture.com/
https://www.digital-solution-architecture.com/
https://www.digital-solution-architecture.com/
https://data.snf.ch/grants/grant/10002384
https://data.snf.ch/grants/grant/10002384
https://data.snf.ch/grants/grant/10002384
https://data.snf.ch/grants/grant/10002384
https://data.snf.ch/grants/grant/10002384
https://www.sciencedirect.com/special-issue/10DML17WPDQ
https://www.sciencedirect.com/special-issue/10DML17WPDQ
https://www.sciencedirect.com/special-issue/10DML17WPDQ
https://www.sciencedirect.com/special-issue/10DML17WPDQ

| Summa ry https://api-patterns.org/book/

= APl design is a wicked problem, many criteria and options, no single optimal solution
= API first: Business processes and domain models shape API purpose and structure

= API processes/quidelines and patterns complement each other nicely

= Patterns establish a common vocabulary, report proven solutions, serve as checklists
= “Patterns for APl Design” available online, in articles, in book

© Olaf Zimmermann and Daniel Liibke, 2025.

55

https://api-patterns.org/book/
https://api-patterns.org/book/
https://api-patterns.org/book/

Thank you for
your attention!

Are there any questions?

© Olaf Zimmermann and Daniel Liubke, 2025.

SN VE4?4,

WU}
&

3
%0 0

PATTERNS FOR
API DEsSIGN

SIMPLIFYING INTEGRATION
wWITH LOOSELY COUPLED
MESSAGE EXCHANGES

OLAF ZIMMERMANN
MIRKO STOCKER
IDANIEL LUBKE
UWwWE ZDUN
CESARE PAUTASSO

P

Order & Save 35%*
on eBook at
informit.com/api-patterns

* Use code API-PATTERNS during checkout
» Offer only good at informit.com
» eBook — DRM-Free PDF & EPUB

Print books available**
Please check your local or online store where you
purchase technical related books.

*Discount code API-PATTERNS is only good at informit.com and cannot be used on
the already discounted book + eBook bundle or combined with any other offer.
Discount offer is subject to change.

**If your order print books from InformIT, your order is subject to import duties and
taxes, which are levied once the package reaches the destination country.

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Context/Example: Frontend-Backend Integration
	Slide 5: Web API Example
	Slide 6
	Slide 7
	Slide 8: Why Patterns?
	Slide 9: Existing Patterns Relevant for Remote API Design
	Slide 10: Pattern Example 1: Pipes and Filters
	Slide 11: Pattern Example 2: Publish-Subscribe
	Slide 12: Our Pattern Categories and Questions Answered
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Responsibility Patterns Map
	Slide 17: Processing Resource
	Slide 18: Processing Resource
	Slide 19: Frontend BPM vs. BPM-as-a-Service
	Slide 20: Information Holder Resource
	Slide 21: Operational Data Holder
	Slide 22: Master Data Holder
	Slide 23
	Slide 24: Wish List Pattern (1/2)
	Slide 25: Wish List Pattern (2/2)
	Slide 26: Error Report
	Slide 27: Known Use/Application Example: RFCs 9457 7807
	Slide 28: Evolution Patterns
	Slide 29: Limited Lifetime Guarantee
	Slide 30: Two in Production
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: Patterns for API Design: Chapter/Category MAP
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

